Problem 14

Use indirect reasoning to prove that $\log _{2} 5$ is an irrational number.

Solution

Suppose that $\log _{2} 5$ is a rational number, that is, a ratio of two positive irreducible integers, m and n.

$$
\begin{aligned}
\log _{2} 5 & =\frac{m}{n} \\
2^{m / n} & =5 \\
\left(2^{m / n}\right)^{n} & =(5)^{n} \\
2^{m} & =5^{n} \\
2\left(2^{m-1}\right) & =\underbrace{5 \cdot 5 \cdots 5 \cdot 5}_{n \text { times }}
\end{aligned}
$$

The left side is an even number because it can be written as 2 times an integer 2^{m-1}. The right side, however, does not have a factor of 2 in its prime factorization, so it is in fact an odd number. This is a contradiction. Therefore, $\log _{2} 5$ is an irrational number.

